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Abstract The model presented accounts for the diffusion of a reactant and of charge
carriers within the modifier layer placed at electrode surface, and redox interaction
between reactant and an active center bearing charge carriers. The study extends our
previous model by the use of a combination of two kinds of redox interaction—a
simple chemical second-order reaction, and Michaelis-type redox reaction. Depend-
ing on relative increments from these two kinetic models, either linear, or hyperbolic
dependencies of electric current on reactant concentration were obtained. The results
obtained have been analyzed in terms of current-concentration interdependencies.

Keywords Modeling · Electro catalysis · Reaction-diffusion · Sensor ·
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1 Introduction

Electrocatalysis—acceleration of electrochemical processes by catalysts—is an
important phenomenon, widely exploited for development of fuel cells, electro-
synthesis systems, and sensors or biosensors. Among a variety of electrocatalytic
systems, chemically modified electrodes play an important role. These electrodes
contain a thin layer of either organic or inorganic substance which is able to act
as an electrocatalyst in electrochemical conversion of solution species. Among
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many electrocatalytic systems of this kind known, our recent examples relate to
electrocatalytic reduction of hydrogen peroxide at Prussian blue-modified elec-
trode [1,2], electrooxidation of ascorbic acid at the same electrode [3], and elec-
trooxidation of some organic species at electrode, modified with redox media-
tor poly(neutral red) [4], poly(toluidine blue) [5], polyaniline or its derivatives
[6–8].

One of the most fundamental problems related to electrocatalysis at chemically
modified electrodes relates to the location of reaction site. During electrocatalytic
redox transformation of solution species, a balance of two partial processes estab-
lishes: the flow of species from the bulk of solution to the modifier-solution boundary
along with the possible diffusion of species within the modifier layer appears to be
compensated by charge carrier (electrons or holes) diffusion in the opposite direction,
viz. from the background electrode through the modifier layer to the reaction zone.
At a relatively fast diffusion of charge carriers within the modifier layer, the reaction
site appears to be located at a modifier-solution boundary. Adversely, at a relatively
slow diffusion of charge carriers, the reaction zone is located within this layer, and
shifts within it towards the background electrode with decreasing mobility of charge
carriers. Experimentally, both cases were observed with the use of in situ Raman spec-
troelectrochemistry. Electrooxidation of hydroquinone and ascorbic acid at electrode,
modified with poly(toluidine blue), was found to occur at a modifier-solution inter-
face (“metal-like electrocatalysis”) [5], whereas same or related processes proceeded
within the modifier layer, as it was shown for electrodes, modified with polyaniline
[7,8], or poly(neutral red) [4], or Prussian blue [1] (“redox electrocatalysis”).

Earlier, we studied the dependence of the location of reaction zone on various
parameters [9]. As a result, the deviation from the linearity for the dependence of
electric current on the concentration of solution species was shown. In our next study,
we showed this nonlinearity to be dependent on the mobility of charge carriers [10]. At
a fast diffusion of charge carriers, the reaction proceed at an outer interface, and the
current-concentration dependence appears to be linear, whereas lowering of charge
carrier mobility results both in the shift of reaction zone into the bulk of a modifier
layer, and the deviation of the said dependence from linearity. On the other hand, a
nonlinear, hyperbolic dependence of current on concentration is well known for bio-
sensors–bioelectrocatalytic devices, based on enzyme-containing layer placed at an
electrode surface [11]. For these devices, however, the nonlinearity is determined by
the hyperbolic nature of Michaelis–Menten type enzyme kinetics, as distinct from sim-
ple electrocatalytic systems, where a simple bimolecular reaction of solution species
with “active centers” of a modifier occurs [9,10]. The present study aims at the study of
current-concentration dependencies for electrocatalytic systems, possessing a mixed
Michaelis–Menten type (hyperbolic), and a simple bimolecular kinetics, describing
the interaction of solution species with reaction sites of a modifier.

2 The model and approximations

A simple model, closely similar to that described earlier [9,10], was used. A flat
surface of electrode is assumed to be covered with a uniform layer of a conducting
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polymer of a definite thickness d. For the seek of simplicity, as distinct from [9,10],
the only value for d of 10−6 m (or 1μm) has been taken into account. The electrode is
immersed into a solution containing reactant. No concentration gradient is assumed to
be either for reactant or for reaction product outside of a polymer layer in the course
of electrocatalytic process.

The diffusion of reactant into a polymer layer is described by the Fick’s law:

∂ R

∂t
= D

∂2 R

∂x2 , (1)

where R means the concentration of reactant, t—time, x is a space coordinate, and D
is the diffusion coefficient for reactant.

By applying a suitable electrode potential, electrochemical conversion of a reactant
into product proceeds. This conversion means either anodic oxidation (i.e., withdraw-
ing of electrons from reactant), or cathodic reduction (i.e., addition of electrons to
reactant). As distinct from our previous studies [9,10], it is supposed here that the
charge transfer process follows two mechanisms. One of them relates to a simple
redox reaction with active centres (charge carriers) in polymer film according to rela-
tion:

R + n = P, (2)

where R and P are reactant and reaction product, respectively, and n is a charge carrier,
i.e. an electron for cathodic reduction, or a hole for anodic oxidation processes.

The rate of this reaction is described by a simple equation of chemical kinetics:

d P

dt
= −d R

dt
= k Rn, (3)

where k is a second-order rate constant of chemical reaction, and R and n are mean
concentrations of reactant and charge carrier, respectively.

The second mechanism for the conversion of R to P proceeds following Michaelis–
Menten type mechanism, which involve the formation of a virtual complex of R with
active centres carrying electric charges, and the next following split of this complex
leading to reaction product P:

R + n = [R ∗ n], (4)

[R ∗ n] = P, (5)

where R and P have same meaning as in (2), and [R∗n] presents the transient complex.
For this mechanism, it is supposed that the complex formation (4) proceeds in

both (forward and backward) directions, characterized by two rate constants k−1 and
k1 for forward and backward reactions, respectively, whereas complex split (5) is a
one-directional process characterized by the catalytic first-order rate constant kcat . In
accordance with this Michaelis–Menten type mechanism, the rate expression appears
to be as follows:
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d P

dt
= kcat Rn

KM + R
, (6)

where KM presents Michaelis constant—a combination of all three rate constants in
the processes (4) and (5):

KM = k−1 + kcat

k1
(7)

A combination of both possible mechanisms is modelled here by the dimensionless
coefficient α, varying between 0 and 1. For α = 1, the reaction follows a simple chem-
ical reaction (2) without any increment from Michaelis–Menten-like mechanism. In
contrary, the reaction follows Michaelis–Menten type mechanism (4, 5) without any
increment from a simple chemical reaction for α = 0. In calculations, α values ranging
from 0 to 1 at increments of 0.1 have been used.

By combining the diffusion equation (1) with simple kinetic equation (3) and
Michaelis–Menten kinetic equation (6), the rate equations for R, P and n could be
expressed as follows:

∂ R

∂t
= D

∂2 R

∂x2 − αk Rn − (1 − α)
kcat Rn

KM + R
, (8)

∂ P

∂t
= D

∂2 P

∂x2 + αk Rn + (1 − α)
kcat Rn

KM + R
, (9)

∂n

∂t
= Dn

∂2n

∂x2 − αk Rn − (1 − α)
kcat Rn

KM + R
, (10)

x ∈ ]0, d[, t > 0.

Let x = 0 represent the electrode/polymer film boundary while x = d is the thick-
ness of a polymer layer. The electrocatalytic processes start when the reactant appears
over the surface of a polymer layer. This is used in the initial conditions (t = 0)

R(0, x) =
{

R0, x = d,

0, x ∈ [0, d[,

P(0, x) = 0, n(0, x) = n0, x ∈ [0, d] . (11)

Consequently, the boundary conditions are (t > 0)

∂ R(t, 0)

∂x
= 0, R(t, d) = R0,

∂ P(t, 0)

∂x
= 0, P(t, d) = 0,

n(t, 0) = n0,
∂n(t, d)

∂x
= 0. (12)
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The density I (t) of the current at time t can be obtained explicitly

I (t) = ne F Dn
∂n(0, t)

∂x
, (13)

where ne = 1 and represents the number of electrons involved in a charge transfer,
F is Faraday constant, F ≈ 9, 65 × 104l/mol. We assume, that the system (8)–(12)
approaches a steady-state as t → ∞

I∞ = lim
t→∞ I (t).

I∞ is assumed to be the steady-state current.
The problem (8)–(12) was solved numerically using the finite difference technique

[11].
For simplicity, the diffusion coefficients for R and P have been chosen to be equal,

and a typical value of D = 10−9 m2/s has been taken for calculations. Three values for
the diffusion coefficient of charge carriers Dn of 10−9, 10−10, and 10−11 m2/s, have
been used. The upper limit of Dn chosen coincides with D for reactant or product
species, whereas the lower limit of Dn has been chosen as being up to two orders of
magnitude lower. This means that, in a physical sense, the electrode matter (conducting
polymer) is considered here as a semiconductor.

Like as in our previous work [10], the only value for n0 = 4 × 103mol/m3 (4 mol/l)
has been taken. The redox reaction rate constant (k) has been varied within the limits
of two orders of magnitude between 10−2 m3mol · s (or 101 l/mol · s) and 10 m3mol · s
(or 103 l/mol · s), whereas the reactant concentration R has been varied within the
limits of 1–10 mol/m3 (1–10 mM) at intervals of 1 mol/m3. Additionally, three values
for catalytic constant kcat of 1, 10, and 100 s−1, and, for simplicity, the only value for
KM of 5 mol/m3 (0.005 mol/l) were taken for calculations. The numerical values are
summarized in Table 1.

3 Results and discussion

Figure 1 presents typical current-concentration profiles, obtained for a selected value
of k = 103 l/mol · s, and varying kcat . At the lowest value of kcat (0.1 s−1), almost no
current response is observed for “pure” Michaelis–Menten type reaction (for α = 0).
An increase of α, as it could be expected, results in a progressive increase of the slope
for the corresponding profiles, which retain their linear character (Fig. 1a). An increase
of kcat by one order of magnitude (up to 1 s−1) causes an increase of the slope for
current-concentration profile at α = 0, whereas the increment from Michaelis-like
mechanism diminishes with increasing α and appears to be negligible for α approach-
ing 1 (Fig. 1b). It is seen from Fig. 1b, that the current-concentration dependence
bears a hyperbolic character for α = 0, and turns gradually into a linear dependence
at increasing α up to α = 1. A progressive increase of kcat leads to further increase of
the slope for profiles, and a phenomenon of “compensation” could be observed at a
definite ratio of kcat and k, as shown in Fig. 1c. Here, for kcat = 10 s−1, close related
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Table 1 Numerical values for parameters, taken into consideration

Parameter Dimension Numerical values

d (thickness of polymer layer) (m) 10−6

(μm) 1

D (diffusion coefficient for reactant and product) (m2/s) 10−9

Dn (diffusion coefficient for charge carriers) (m2/s) 10−11, 10−10, 10−9

k (second-order reaction rate constant) (m3 · mol−1 · s−1) 10−2, 10−1, 100

(l · mol−1 · s−1) 10, 102, 103

R (concentration of reactant in solution) (mol/m3) 1 to 10

(mol/l) 10−3 to 10−2

n (concentration of charge carriers) (mol/m3) 4 · 103

(mol/l) 4

kcat (catalytic rate constant) (s−1) 1, 10, 102

KM (Michaelis constant) (mol/m3) 5

(mol/l) 0.005

slopes are observed for α varying between 0 and 1, i.e. independent on a relative incre-
ment of either chemical, or Michaelis-like reaction. The only difference in this case
is that the dependence obtained possesses either a linear, or a hyperbolic character for
chemical (α = 1) or Michaelis-like (α = 0) reaction mechanisms, respectively. As it
could be expected, further increase of kcat causes an increase of a relative increment
from Michaelis-like reaction, exceeding that from a simple chemical interaction. For
kcat exceeding 10 s−1, a decrease of current response is observed for α increasing
from 0 to 1, as opposed to kcat < 10 s−1 (Fig. 1d). Again, a hyperbolic dependence
of current on concentration is obtained for α = 0, i.e. without any increment from a
simple second order chemical reaction.

Significant changes occur by changing k. Figure 2 (a, b) displays the dependencies,
obtained for k = 102 l/mol · s. In Fig. 2a, again, a “compensation”, i.e. close related
slopes for varying α, is evident. Similarly like for a combination of k = 103 l/mol · s
and kcat = 10 s−1 as depicted in Fig. 1c, same effect is achieved here for a combination
of k = 102 l/mol · s and kcat = 1 s−1, where both rate constants are lower by an order
of magnitude. It is also seen from Fig. 2a that a hyperbolic dependence, characteristic
for Michaelis-like kinetics (at α = 0) develops gradually into a linear dependence,
characteristic for a simple second-order chemical reaction with an increase of α up
to 1. For the said combination of k = 102 l/mol · s and kcat = 1 s−1 (Fig. 2a), the
slopes of current-concentration dependencies are approximately 5- or 6-fold lower
than for a combination of k = 103 l/mol · s and kcat = 10 s−1 (Fig. 1c). An interesting
observation for this couple of rate constants should be noted. An intersection point,
where current response do not depend on α, appears for concentration values between
5 and 6 mM (Fig. 2a), whereas it appears to be located between 8 and 9 mM for a
combination of k = 103 l/mol · s and kcat = 10 s−1 (Fig. 1c), although the ratio of
k/kcat appears to be the same in both these cases.
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Fig. 1 Dependence of current on concentration, as obtained for different kcat and α (as indicated) at
k = 103 l · mol−1 · s−1 and Dn = 10−9 m2 · s−1

An increase in kcat leads to a drastic increase of current response (Fig. 2b). It is well
seen from Figs. 1 and 2, that the slope of graphs obtained and thus the sensitivity of
response to concentration increases at increasing α for the ratio of k/kcat > 100 l/mol,
or decreases for k/kcat < 100 l/mol. This decrease appears well expressed for the low-
est values of k/kcat = 1 or even 0.1 as depicted in Fig. 2b, d, respectively. Also, the
evolution of hyperbolic to linear character for these dependencies with increasing α

is well seen for all combinations of k and kcat .
It is of interest to analyze the results obtained within the frame of Michaelis–Men-

ten kinetics. In all calculations, KM value of 5 mM has been used. However, it is
well known in the field of biosensors that KM (or, more exactly, the apparent Michae-
lis constant KM(app)) is subjected to changes depending on various factors, mainly
on diffusion conditions within a modifier layer on the electrode surface [11]. Also,
for α approaching 1, the only way for conversion of reactant to product is the direct
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Fig. 2 Dependence of current on concentration, as obtained for different α (as indicated), k = 102 l·mol−1 ·
s−1 (a, b) or 101 l · mol−1 · s−1 (c, d), and kcat = 1 s−1 (a, c) or 100 s−1 (b, d) at Dn = 10−9 m2 · s−1

chemical interaction according to Eq. (2). In this case, KM should be indefinitely high,
provided that diffusion of reactant within the modifier layer proceeds fast as compared
to chemical reaction. However, even for this “pure” chemical interaction, a hyperbolic
Michaelis–Menten like dependencies can be observed, caused by the relatively slow
diffusion of reactant, as it was shown in our previous study [10].

Figure 3a, b, discloses the dependence of an apparent KM on kinetic characteristics.
For α = 0 (i.e., Michaelis–Menten like mechanism), KM depends greatly on kcat . For
the lowest value of kcat of 1 s−1, KM = 6.5 mM, and does not differ greatly from that
taken into calculations. For greater values of kcat (10 and 100 s−1), KM increases up to
20.2, and 24.6 mM, correspondingly (Fig. 3a). It could be concluded that an increase
of the rate of catalytic transformation of reactant according to Eqs. (3, 4) leads to
increase of an apparent KM. Indeed, an increase of kcat under a constant diffusion
coefficient for reactant D means a progressive decrease of a relative diffusion rate as
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Fig. 3 Dependence of KM (a, b) and Imax (c, d) on α, as obtained for different kcat (as indicated),
k = 101 l · mol−1 · s−1 (a, c) or 102 l · mol−1 · s−1 (b, d) at Dn = 10−9 m2 · s−1

compared to the rate of chemical transformation of reactant. It is seen from Fig. 3,
that an increase of α causes different changes of KM, greatly influenced by the value
of kcat . For k = 10 l/mol · s (Fig. 3a), and the lowest kcat of1s−1, a slight increase of
KM from 6.5 to 10.4 mM is observed for α = 0.8, whereas a sharp decrease of KM
from 20.2 to 8.9 mM proceeds by changing of α from 0.0 to 0.8 for kcat of 10 s−1,
and negligible changes of KM from 24.6 to 23.7 mM occur by changing α from 0.0
to 0.8 for the biggest kcat taken into calculation of 100 s−1. These tendencies possess
complicated character, and could not be predicted without calculations. Noteworthy
changes in the dependence of KM on α occur by increasing k, viz. by increasing of
a relative rate of a direct chemical interaction relative to Michaelis-type one. As an
example, Fig. 3b depicts the corresponding dependencies for k = 100 l/mol · s. Here,
the tendency for an increase of KM for lowest kcat with increasing α appears much
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stronger as for lower value of k. Also, the decrease of KM for the intermediate kcat of
10 s−1 appears not as steep as for lower k. For the greatest kcat of 100 s−1, almost no
changes of KM occur with increasing α. In all cases (except for a combination of lowest
kcat and highest k), however, KM values do not approach indefinite high values at α

approaching 1, as it could be expected for “pure” chemical interaction according to
Eq. (2), and for very fast diffusion of reactant. This means that, even at a relatively high
increment from “pure” chemical interaction (and low increment from Michaelis-like
kinetics, accordingly), the dependence of current on concentration bears hyperbolic
(non-linear) character.

An important characteristic for these hyperbolic dependencies is the maximum cur-
rent (Imax ), viz. the current response to an indefinitely high reactant concentration.
Some examples of these tendencies are presented in Fig. 3c, d. As it could be expected,
for α = 0, Imax depends greatly on kcat . For kcat values of 1, 10, and 100 s−1, Imax

values of roughly 0.5, 5.3, and 19.4 a.u. were obtained for k = 10 l/mol ·s. In this case,
an increase of α from 0 up to 0.8 causes the decrease of the corresponding values of
Imax to a different degree, up to 60, 20, and 45 %, respectively. In case of increasing
increment from “pure” chemical kinetics relative to Michaelis-like kinetic increment,
the decrease of Imax with growing α proceeds to a lesser degree (cf. d and c in Fig. 3).
For the lowest value of kcat , an increase of Imax with growing α is observed. Clearly, all
these tendencies hardly could be predicted without the present modeling. In a physical
sense, the presence of Imax , and its dependencies on various parameters chosen show
the limits for the efficiency of electrocatalysis under the specified conditions.

4 Conclusions

The results obtained show that two increments from chemical kinetics, one related
to a simple second-order reaction, and another to hyperbolic Michaelis-like reaction
scheme, could be simply combined into one electrocatalytic process. Depending on
relative increments from these two kinetic models, either linear, or hyperbolic depen-
dencies of electric current on reactant concentration can be obtained. It has been shown
that the value for an apparent Michaelis constant KM exceeds in all cases the corre-
sponding value taken into calculation. Even in absence of an increment from a simple
second-order reaction, a higher value of KM is obtained because of a relative slow dif-
fusion of charge carriers taken into account. Because of restricted diffusion of charge
carriers, an increase of catalytic constant in Michaelis-like kinetics results in a sig-
nificant increase of KM. The dependencies of KM and of maximum current obtained
at indefinitely high reactant concentration, on a relative increment from Michaelis-
like, as well as second-order chemical kinetics are mainly controlled by the ratio of the
corresponding rate constants. The results obtained could be applied for electrocatalytic
processes, where to types of interaction of reactant with reaction centers is possible.

References

1. R. Mazeikiene, G. Niaura, A. Malinauskas, J. Electroanal. Chem. 660, 140–146 (2011)
2. R. Araminaite, R. Garjonyte, A. Malinauskas, J. Solid State Electrochem. 14, 149–155 (2010)

123



J Math Chem (2012) 50:2001–2011 2011

3. R. Araminaite, R. Garjonyte, A. Malinauskas, Cent. Eur. J. Chem. 7, 739–744 (2009)
4. R. Mazeikiene, K. Balskus, O. Eicher-Lorka, G. Niaura, R. Meskys, A. Malinauskas, Vibrat. Spec-

trosc. 51, 238–247 (2009)
5. R. Mazeikiene, G. Niaura, A. Malinauskas, Electrochim. Acta 53, 7736–7743 (2008)
6. K. Brazdziuviene, I. Jureviciute, A. Malinauskas, Electrochim. Acta 53, 785–791 (2007)
7. R. Mazeikiene, G. Niaura, A. Malinauskas, Electrochim. Acta 51, 5761–5766 (2006)
8. R. Mazeikiene, G. Niaura, A. Malinauskas, Electrochem. Commun. 7, 1021–1026 (2005)
9. R. Naujikas, A. Malinauskas, F. Ivanauskas, J. Math. Chem. 42, 1069–1094 (2007)

10. M. Puida, A. Malinauskas, F. Ivanauskas, J. Math. Chem. 49, 1151–1162 (2011)
11. R. Baronas, F. Ivanauskas, J. Kulys, Mathematical Modeling of Biosensors Springer Series on Chemical

Sensors and Biosensors (Springer, Netherlands, 2010)

123


	Modeling of electrocatalysis at chemically modified electrodes: a combination of second-order  and Michaelis-type chemical kinetics
	Abstract
	1 Introduction
	2 The model and approximations
	3 Results and discussion
	4 Conclusions
	References


